Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 9(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34579249

RESUMO

Schiff bases encompassing a 1,2,3-triazole motif were synthesized using an efficient multi-step synthesis. The formations of targeted Schiff base ligands were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analysis). The spectral data analysis revealed that the newly designed hydrazones exist as a mixture of trans-E and cis-E diastereomers. Densityfunctional theory calculations (DFT) for the Schiff bases showed that the trans-trans form has the lowest energy structure with maximum stability compared to the other possible geometrical isomers that could be present due to the orientation of the amidic NH-C=O group. The energy differences between the trans-trans on one side and syn-syn and syn-trans isomers on the other side were 9.26 and 5.56 kcal/mol, respectively. A quantitative structure-activity relationship investigation was also performed in terms of density functional theory. The binding affinities of the newly synthesized bases are, maybe, attributed to the presence of hydrogen bonds together with many hydrophobic interactions between the ligands and the active amino acid residue of the receptor. The superposition of the inhibitor N3 and an example ligand into the binding pocket of 7BQY is also presented. Further interesting comparative docking analyses were performed. Quantitative structure-activity relationship calculations are presented, illustrating possible inhibitory activity. Further computer-aided cytotoxicity analysis by Drug2Way and PASS online software was carried out for Schiff base ligands against various cancer cell lines. Overall, the results of this study suggest that these Schiff base derivatives may be considered for further investigation as possible therapeutic agents for COVID-19.

2.
ACS Omega ; 6(1): 301-316, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458482

RESUMO

New conjugates of substituted 1,2,3-triazoles linked to 1,2,4-triazoles were synthesized starting from the appropriate S-propargylated 1,2,4-triazoles 7 and 8. Ligation of 1,2,4-triazoles to the 1,2,3-triazole core was performed through Cu(I)-catalyzed cycloaddition of 1,2,4-triazole-based alkyne side chain 7 and/or 8 with several un/functionalized alkyl- and/or aryl-substituted azides 9-15 to afford the desired 1,4-disubstituted 1,2,3-triazoles 16-27, using both classical and microwave methods. After their spectroscopic characterization (infrared, 1H, 13C nuclear magnetic resonance, and elemental analyses), an anticancer screening was carried out against some cancer cell lines including human colon carcinoma (Caco-2 and HCT116), human cervical carcinoma (HeLa), and human breast adenocarcinoma (MCF-7). The outcomes of this exploration revealed that compounds 17, 22, and 25 had a significant anticancer activity against MCF-7 and Caco-2 cancer cell lines with IC50 values of 0.31 and 4.98 µM, respectively, in relation to the standard reference drug, doxorubicin. Enzyme-docking examination was executed onto cyclin-dependent kinase 2; a promising aim for cancer medication. Synthesized compounds acquiring highest potency showcased superior interactions with the active site residue of the target protein and exhibited minimum binding energy. Finally, the density functional theory (DFT) calculations were carried out to confirm the outcomes of the molecular docking and the experimental findings. The chemical reactivity descriptors such as softness (δ), global hardness (η), electronegativity (χ), and electrophilicity were calculated from the levels of the predicted frontier molecular orbitals and their energy gap. The DFT results and the molecular docking calculation results explained the activity of the most expectedly active compounds 17, 22, and 25.

3.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503871

RESUMO

A library of novel imidazole-1,2,3-triazole hybrids were designed and synthesized based on the hybrid pharmacophore approach. Therefore, copper(I)catalyzed click reaction of thiopropargylated-imidazole 2 with several organoazides yielded two sets of imidazole-1,2,3-triazole hybrids carrying different un/functionalized alkyl/aryl side chains 4a-k and 6a-e. After full spectroscopic characterization using different spectral techniques (IR, 1H, 13C NMR) and elemental analyses, the resulted adducts were screened for their anticancer activity against four cancer cell lines (Caco-2, HCT-116, HeLa, and MCF-7) by the MTT assay and showed significant activity. In-silico molecular docking study was also investigated on one of the prominent cancer target receptors, i.e., glycogen synthase kinase-3ß (GSK-3ß), revealing a good binding interaction with our potent compound, 4k and was in agreement with the in vitro cytotoxic results. In addition, the ADMET profile was assessed for these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes. Finally, this research design and synthesis offered click chemistry products with interesting biological motifs mainly 1,2,3 triazoles linked to phenyl imidazole as promising candidates for further investigation as anticancer drugs.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Desenho de Fármacos , Imidazóis/química , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Triazóis/química , Antineoplásicos/síntese química , Sítios de Ligação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/química , Humanos , Imidazóis/síntese química , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
4.
ACS Omega ; 5(10): 4807-4815, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32201766

RESUMO

Newer imidazolium ionic liquid (IL) halides 4a-f appending variety of fluorinated phenylacetamide side chains were designed and synthesized through quaternization of 1-methyl and/or 1,2-dimethylimidazole with appropriate 2-chloro-N-(fluorinatedphenyl)acetamides. The resulting ILs were converted to their respective ionic liquid analogues carrying fluorinated counteranions (PF6 -, BF4 -, and/or CF3COO-) 5a-r. All newly synthesized ILs were fully characterized using several spectroscopic experiments such as 1H, 13C, 11B, 19F, 31P NMR, and mass analysis. The synthesized ionic liquids were investigated for their DNA binding and anticancer activities. The obtained DNA binding constants ranged from 1.444 × 105 to 3.518 × 105, indicating a reasonably good binding affinity. The percentage of anticancer activities ranged from 48 to 59 with H-1229 cell line, showing quite good anticancer potential. The modeling studies indicated the interactions of the reported molecules with DNA via hydrogen bonds. These were in agreement with those of DNA binding and anticancer results. Briefly, the designed ionic liquids may be used as good anticancer candidates for treating human cancer.

5.
Bioorg Chem ; 94: 103446, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31791685

RESUMO

This study reports an efficient and convenient regioselective synthesis of a novel series of S- and S,N-bis(acyclonucleoside) analogues carrying 5-(2-chlorophenyl)-2,4-dihydro-1,2,4-triazole-3-thione. A facile and straightforward synthesis of thiazolotriazole and triazolothiazines has also been reported. Structures of all newly synthesized compounds were well characterized by infrared IR, 1H and 13C nuclear magnetic resonance (NMR) and mass (MS) spectra analyses. Cytotoxic screening was performed according to (3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay method using staurosporine as a reference drug against three different types: human liver cancer cell line (Hep G2), Michigan cancer foundation-7 (MCF-7) and human colorectal carcinoma cell line (HCT116). These data showed considerable anticancer activity for these newly synthesized compounds. Biological data for most of the S-acyclonucleoside analogues and S,N-bis(acyclonucleoside) analogues showed excellent activity with micromolar (µM) half maximal inhibitory concentration (IC50) values against tumor cells. EGFR assay and tubulin inhibition assay analysis were performed for the most active compounds to get more details about their mechanism of action. In order to assess and explain their binding affinities, molecular docking simulation was studied against EGFR and tubulin binding sites. The results obtained from molecular docking study and those obtained from cytotoxic screening were correlated. Extensive structure activity relationship (SAR) analyses were also carried out.


Assuntos
Antineoplásicos/farmacologia , Microtúbulos/efeitos dos fármacos , Nucleosídeos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 20(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212762

RESUMO

A focused array of green imidazolium ionic liquids (ILs) encompassing benzothiazole ring and amide linkage were designed and synthesized using quaternization and metathesis protocols. The synthesized ILs have been fully characterized by usual spectroscopic methods and screened for their anticancer activities against human cancer cell lines originating from breast and colon cancers. Collectively, our biological data demonstrate that the newly synthesized series has variable anticancer activities in the examined cancer types. The synthesized ILs 8, 10 and 21-29 comprising the methyl and methyl sulfonyl benzothiazole ring emerged as the most potent compounds with promising antiproliferative activities relative to their benzothiazole ring counterparts. Furthermore, the mechanism underlying the observed anticancer activity was investigated. The most active compound 22 appears to exert its anticancer effect through apoptosis dependent pathway in breast cancer cells. Interestingly, compound 22 has also shown good in silico absorption (81.75%) along with high gastro-intestinal absorption as per ADME predictions.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzotiazóis/química , Imidazóis/química , Imidazóis/farmacologia , Líquidos Iônicos/química , Antineoplásicos/farmacocinética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fenômenos Químicos , Humanos , Imidazóis/farmacocinética , Espectroscopia de Ressonância Magnética
7.
Chem Cent J ; 12(1): 110, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30387018

RESUMO

BACKGROUND: Nitrogen heterocyclic rings and sulfonamides have attracted attention of several researchers. RESULTS: A series of regioselective imidazole-based mono- and bis-1,4-disubstituted-1,2,3-triazole-sulfonamide conjugates 4a-f and 6a-f were designed and synthesized. The first step in the synthesis was a regioselective propargylation in the presence of the appropriate basic catalyst (Et3N and/or K2CO3) to afford the corresponding mono-2 and bis-propargylated imidazoles 5. Second, the ligation of the terminal C≡C bond of mono-2 and/or bis alkynes 5 to the azide building blocks of sulfa drugs 3a-f using optimized conditions for a Huisgen copper (I)-catalysed 1,3-dipolar cycloaddition reaction yielded targeted 1,2,3-triazole hybrids 4a-f and 6a-f. The newly synthesized compounds were screened for their in vitro antimicrobial and antiproliferative activities. Among the synthesized compounds, compound 6a emerged as the most potent antimicrobial agent with MIC values ranging between 32 and 64 µg/mL. All synthesized molecules were evaluated against three aggressive human cancer cell lines, PC-3, HepG2, and HEK293, and revealed sufficient antiproliferative activities with IC50 values in the micromolar range (55-106 µM). Furthermore, we conducted a receptor-based electrostatic analysis of their electronic, steric and hydrophobic properties, and the results were in good agreement with the experimental results. In silico  ADMET prediction studies also supported the experimental biological results and indicated that all compounds are nonmutagenic and noncarcinogenic. CONCLUSION: In summary, we have successfully synthesized novel targeted benzimidazole-1,2,3-triazole-sulfonamide hybrids through 1,3-dipolar cycloaddition reactions between the mono- or bis-alkynes based on imidazole and the appropriate sulfonamide azide under the optimized Cu(I) click conditions. The structures of newly synthesized sulfonamide hybrids were confirmed by means of spectroscopic analysis. All newly synthesized compounds were evaluated for their antimicrobial and antiproliferative activities. Our results showed that the benzimidazole-1,2,3-triazole-sulfonamide hybrids inhibited microbial and fungal strains within MIC values from 32 to 64 µg/mL. The antiproliferative evaluation of the synthesized compounds showed sufficient antiproliferative activities with IC50 values in the micromolar range (55-106 µM). In conclusion, compound 6a has remarkable antimicrobial activity. Pharmacophore elucidation of the compounds was performed based on in silico ADMET evaluation of the tested compounds. Screening results of drug-likeness rules showed that all compounds follow the accepted rules, meet the criteria of drug-likeness and follow Lipinski's rule of five. In addition, the toxicity results showed that all compounds are nonmutagenic and noncarcinogenic.

8.
Chem Cent J ; 12(1): 118, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467608

RESUMO

BACKGROUND: Pyridinium Schiff bases and ionic liquids have attracted increasing interest in medicinal chemistry. RESULTS: A library of 32 cationic fluorinated pyridinium hydrazone-based amphiphiles tethering fluorinated counteranions was synthesized by alkylation of 4-fluoropyridine hydrazone with various long alkyl iodide exploiting lead quaternization and metathesis strategies. All compounds were assessed for their anticancer inhibition activity towards different cancer cell lines and the results revealed that increasing the length of the hydrophobic chain of the synthesized analogues appears to significantly enhance their anticancer activities. Substantial increase in caspase-3 activity was demonstrated upon treatment with the most potent compounds, namely 8, 28, 29 and 32 suggesting an apoptotic cellular death pathway. CONCLUSIONS: Quantum-polarized ligand docking studies against phosphoinositide 3-kinase α displayed that compounds 2-6 bind to the kinase site and form H-bond with S774, K802, H917 and D933.

9.
Chem Cent J ; 11(1): 117, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29159721

RESUMO

BACKGROUND: 1,2,4-Triazoles and 1,2,3-triazoles have gained significant importance in medicinal chemistry. RESULTS: This study describes a green, efficient and quick solvent free click synthesis of new 1,2,3-triazole-4,5-diesters carrying a lipophilic side chain via 1,3-dipolar cycloaddition of diethylacetylene dicarboxylate with different surfactant azides. Further structural modifications of the resulting 1,2,3-triazole diesters to their corresponding 1,2,4-triazole-3-thiones via multi-step synthesis has been also investigated. The structures of the newly designed triazoles have been elucidated based on their analytical and spectral data. These compounds were evaluated for their antimicrobial activities. Relative to the standard antimicrobial agents, derivatives of 1,2,3-triazole-bis-4-amino-1,2,4-triazole-3-thiones were the most potent antimicrobial agents with compound 7d demonstrating comparable antibacterial and antifungal activities against all tested microorganisms. Further, the selected compounds were studied for docking using the enzyme, Glucosamine-6-phosphate synthase. CONCLUSIONS: The in silico study reveals that all the synthesized compounds had shown good binding energy toward the target protein ranging from - 10.49 to - 5.72 kJ mol-1 and have good affinity toward the active pocket, thus, they may be considered as good inhibitors of GlcN-6-P synthase.

10.
Molecules ; 20(9): 16048-67, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26364633

RESUMO

In the present study, a new series of 2,5-disubstituted-1,3,4-thiadiazole tethered 1,2,4-triazole, 1,3,4-thiadiazole, 1,3,4-oxadiazole and Schiff base derivatives were synthesized and characterized by IR, ¹H-NMR, (13)C-NMR, MS and elemental analyses. All compounds were screened for their antibacterial, antifungal and antiproliferative activity. Some of the synthesized derivatives have displayed promising biological activity.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Antineoplásicos/química , Antineoplásicos/síntese química , Oxidiazóis/química , Bases de Schiff/química , Tiadiazóis/química , Triazóis/química , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...